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Administration

● Assignment 3 is out.

● We've got the assignment 2 autograder and are 
working on grading it.
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Testing.

● Testing is key to developing good software.
● Tests should be easy to access, and easy to 

reuse.
● They should be separate from the code you are 

testing.
● I.e. when you test code, you should test it based on 

the docstrings, not based on the actual code that 
you're writing.

● This means that you can test what the user will see.
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Testing.

● Two main aspects of testing:
● Figuring out what you're going to test.
● The tools used to run tests.

● This first aspect is largely language 
independent.
● Not entirely, because some languages might allow 

different types of input.

● The second less so.
● There's a reasonably common paradigm for how to 

test code, but some languages have built-in tools 
for it.
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Test cases.

● What do we test?
● We can't test all inputs.
● So we need to choose a subset that is 

representative.
● We can have 'typical inputs'.
● We can test things where we might suspect 

programmer error.
● We can test 'boundary conditions' that we suspect 

might have been overlooked.
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Test cases.

● It is useful to think 'adversarially' when picking 
test cases.
● That is, try to picture yourself as an adversary trying 

to break a program.
● But do so without cheating, so if the docstring 

specifies some kind of input, limit yourself to those 
inputs.

● But within those inputs try and choose as bad inputs 
as you can.
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Test cases.

● We want all of our test cases to be 
independent.

● That is, we want to be certain of the source of a 
failure.

● So having lots of test cases that build on 
eachother is not a great idea.

● Note that this is different from having test cases 
that test functions that build on other functions.
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What do we test?

● Ideally one tests each function individually.
● This is called unit testing.

● Once all the smaller functions have been 
tested, then you test the larger functions that 
call the smaller ones. 

● When you make any changes, you want to run 
all the tests again.
● This is called regression testing.



July 7 2011

When do we test?

● It is best if you test a function right after writing 
it.
● It is easiest to fix things at this point.

● Often it is useful to come up with test cases 
before you actually write any code.
● This means that you think of the structure of the 

program and what each function does before you 
write the code.

● This means that you can really write the tests in a 
black-box fashion, because you don't know what the 
code will be yet.
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When do we test?

● Professional coders often write test cases 
before writing code.

● Thinking about tests cases while designing is 
also a useful design tool, because it can inform 
your design.

● Makes for more robust code.
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Testing Summary.

● Want individual Unit tests.
● These should be independent of eachother.
● There should be some generic ones, and some 

chosen 'adversarially'.

● Want to design tests before writing code.
● Makes for more robust code and better style tests.

● Want to rerun tests when we change code.
● How do we do all this?
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Break, the first.
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Testing in Python.

● So we have a lot of constraints in Python 
testing.

● And it's hard to satisfy all of them.
● Thus far we've been testing in shell, and it's a 

lot of work to do regression testing that way.
● We could store all of our old tests in a file, but 

then we have to write specific code for opening 
files and dealing with them.

● Luckily python has a module called Nose that 
helps us with a lot of these things.
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Testing with Nose.

● The context for testing with Nose is that we 
have a module named mod.

● We want to test some or all of the functions in it.
● To do this we create a module called 
test__mod.

● In this module we import nose and we 
import mod.

● For each function func we want to test, we 
have a test__func() function.
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Testing with Nose.

● We have:

if __name__ == '__main__':

    nose.runmodule()

● In the body of test__func() we have assert statements.

● assert (boolean condition) will do nothing if the 
condition is true, but will throw an error if it's false.

● So test__func() has a bunch of statements like:

assert func(input) == (expected_output)

● Nose runs these and produces output.
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Nose Output.

● The first line of output tells us the result of the 
tests.
● a dot means pass, an F means fail, an E means an 

error.
● So, a failure is incorrect output, an error is an 

exception of some kind.
● Each failure or error produces information about 

that failure or error.
● The last bit tells us the number of tests passes, the 

number of tests failed, and the number of errors.
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Nose Output

● The information about the errors so far is just 
the error information that python gives back to 
us.

● If we fail a test we can an 'AssertionError'.
● If we want to add some information to this, we 

can put in a string after a comma in the assert 
statement.

assert (condition), "Some String."
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Testing Summary.

● Want individual Unit tests.
● These should be independent of eachother.
● There should be some generic ones, and some 

chosen 'adversarially'.

● Want to design tests before writing code.
● Makes for more robust code and better style tests.

● Want to rerun tests when we change code.
● How does Nose do this?
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Nose and Testing.

● Unit Tests.
● Each test in nose is its own function, so we can 

write a function for each unit test we want.

● Designing Tests Early.
● All we need to write test in nose is the specifiction 

for the function.
● The tests treat functions as a black box.

● Regression Testing.
● Nose makes it quite easy to run all the tests we 

have whenever we want.
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So you have an error.

● If you find an error, you need to debug it, a 
process that is often painful.

● There are a few ways to mitigate this pain.
● Test early! Test Often.
● Find the first point that the code differs from what 

you think it would be.
● Run through the code in your head to make sure 

that if everything goes the way you think, the code 
will work.

● Read the error information, and use it to see if the 
code is correct at the point of the error.



July 7 2011

Break, the second.
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Assignment 2 Solution.

● Conceptually is in several parts.
● The functions to and from algebraic notation are 

their own parts.
● game_summary and strip_tag_info are their 

own part.
● strip_tag_info is the function that game 

summary calls to do it's work.
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Assignment 2 solution.

● For the rest, the problem of recording the 
moves and boards state are intertwined. But it's 
two big of a problem to do on it's own, so we 
have to break it down into component chunks.

● Chunk one: parsing the input into little moves.
● Done by get_move_lst and get_move_str.
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Assignment 2 solution

● For each individual move text, we need to 
extract a bunch of possible bit of information 
from this.
● Done with a bunch of functions: check, mate, 

get_fin_sq, get_piece_type, etc.

● For each move though, this isn't enough. We 
also need to keep track of the board, and 
update it accordingly.
● For this we have update_board(), get_init_move, 

move_piece.
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Assignment 2 solution

● Other things:
● We keep the board as a nested list, in the format 

that we're supposed to return it.
● When trying to find where a piece started, rather 

than looking at all possible place a piece could 
move to; we look at all possible pieces that could 
move to a place and try and find which one could do 
so legally.

● This code relies very heavily on the correctness of 
the file.
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Assignment 3 Comments and Questions.
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