
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

July 7 2011

Administration

● Assignment 3 is out.

● We've got the assignment 2 autograder and are
working on grading it.

July 7 2011

Testing.

● Testing is key to developing good software.
● Tests should be easy to access, and easy to

reuse.
● They should be separate from the code you are

testing.
● I.e. when you test code, you should test it based on

the docstrings, not based on the actual code that
you're writing.

● This means that you can test what the user will see.

July 7 2011

Testing.

● Two main aspects of testing:
● Figuring out what you're going to test.
● The tools used to run tests.

● This first aspect is largely language
independent.
● Not entirely, because some languages might allow

different types of input.

● The second less so.
● There's a reasonably common paradigm for how to

test code, but some languages have built-in tools
for it.

July 7 2011

Test cases.

● What do we test?
● We can't test all inputs.
● So we need to choose a subset that is

representative.
● We can have 'typical inputs'.
● We can test things where we might suspect

programmer error.
● We can test 'boundary conditions' that we suspect

might have been overlooked.

July 7 2011

Test cases.

● It is useful to think 'adversarially' when picking
test cases.
● That is, try to picture yourself as an adversary trying

to break a program.
● But do so without cheating, so if the docstring

specifies some kind of input, limit yourself to those
inputs.

● But within those inputs try and choose as bad inputs
as you can.

July 7 2011

Test cases.

● We want all of our test cases to be
independent.

● That is, we want to be certain of the source of a
failure.

● So having lots of test cases that build on
eachother is not a great idea.

● Note that this is different from having test cases
that test functions that build on other functions.

July 7 2011

What do we test?

● Ideally one tests each function individually.
● This is called unit testing.

● Once all the smaller functions have been
tested, then you test the larger functions that
call the smaller ones.

● When you make any changes, you want to run
all the tests again.
● This is called regression testing.

July 7 2011

When do we test?

● It is best if you test a function right after writing
it.
● It is easiest to fix things at this point.

● Often it is useful to come up with test cases
before you actually write any code.
● This means that you think of the structure of the

program and what each function does before you
write the code.

● This means that you can really write the tests in a
black-box fashion, because you don't know what the
code will be yet.

July 7 2011

When do we test?

● Professional coders often write test cases
before writing code.

● Thinking about tests cases while designing is
also a useful design tool, because it can inform
your design.

● Makes for more robust code.

July 7 2011

Testing Summary.

● Want individual Unit tests.
● These should be independent of eachother.
● There should be some generic ones, and some

chosen 'adversarially'.

● Want to design tests before writing code.
● Makes for more robust code and better style tests.

● Want to rerun tests when we change code.
● How do we do all this?

July 7 2011

Break, the first.

July 7 2011

Testing in Python.

● So we have a lot of constraints in Python
testing.

● And it's hard to satisfy all of them.
● Thus far we've been testing in shell, and it's a

lot of work to do regression testing that way.
● We could store all of our old tests in a file, but

then we have to write specific code for opening
files and dealing with them.

● Luckily python has a module called Nose that
helps us with a lot of these things.

July 7 2011

Testing with Nose.

● The context for testing with Nose is that we
have a module named mod.

● We want to test some or all of the functions in it.
● To do this we create a module called
test__mod.

● In this module we import nose and we
import mod.

● For each function func we want to test, we
have a test__func() function.

July 7 2011

Testing with Nose.

● We have:

if __name__ == '__main__':

 nose.runmodule()

● In the body of test__func() we have assert statements.

● assert (boolean condition) will do nothing if the
condition is true, but will throw an error if it's false.

● So test__func() has a bunch of statements like:

assert func(input) == (expected_output)

● Nose runs these and produces output.

July 7 2011

Nose Output.

● The first line of output tells us the result of the
tests.
● a dot means pass, an F means fail, an E means an

error.
● So, a failure is incorrect output, an error is an

exception of some kind.
● Each failure or error produces information about

that failure or error.
● The last bit tells us the number of tests passes, the

number of tests failed, and the number of errors.

July 7 2011

Nose Output

● The information about the errors so far is just
the error information that python gives back to
us.

● If we fail a test we can an 'AssertionError'.
● If we want to add some information to this, we

can put in a string after a comma in the assert
statement.

assert (condition), "Some String."

July 7 2011

Testing Summary.

● Want individual Unit tests.
● These should be independent of eachother.
● There should be some generic ones, and some

chosen 'adversarially'.

● Want to design tests before writing code.
● Makes for more robust code and better style tests.

● Want to rerun tests when we change code.
● How does Nose do this?

July 7 2011

Nose and Testing.

● Unit Tests.
● Each test in nose is its own function, so we can

write a function for each unit test we want.

● Designing Tests Early.
● All we need to write test in nose is the specifiction

for the function.
● The tests treat functions as a black box.

● Regression Testing.
● Nose makes it quite easy to run all the tests we

have whenever we want.

July 7 2011

So you have an error.

● If you find an error, you need to debug it, a
process that is often painful.

● There are a few ways to mitigate this pain.
● Test early! Test Often.
● Find the first point that the code differs from what

you think it would be.
● Run through the code in your head to make sure

that if everything goes the way you think, the code
will work.

● Read the error information, and use it to see if the
code is correct at the point of the error.

July 7 2011

Break, the second.

July 7 2011

Assignment 2 Solution.

● Conceptually is in several parts.
● The functions to and from algebraic notation are

their own parts.
● game_summary and strip_tag_info are their

own part.
● strip_tag_info is the function that game

summary calls to do it's work.

July 7 2011

Assignment 2 solution.

● For the rest, the problem of recording the
moves and boards state are intertwined. But it's
two big of a problem to do on it's own, so we
have to break it down into component chunks.

● Chunk one: parsing the input into little moves.
● Done by get_move_lst and get_move_str.

July 7 2011

Assignment 2 solution

● For each individual move text, we need to
extract a bunch of possible bit of information
from this.
● Done with a bunch of functions: check, mate,

get_fin_sq, get_piece_type, etc.

● For each move though, this isn't enough. We
also need to keep track of the board, and
update it accordingly.
● For this we have update_board(), get_init_move,

move_piece.

July 7 2011

Assignment 2 solution

● Other things:
● We keep the board as a nested list, in the format

that we're supposed to return it.
● When trying to find where a piece started, rather

than looking at all possible place a piece could
move to; we look at all possible pieces that could
move to a place and try and find which one could do
so legally.

● This code relies very heavily on the correctness of
the file.

July 7 2011

Assignment 3 Comments and Questions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

